The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization.

نویسندگان

  • Perry Johnson
  • Choonsik Lee
  • Kevin Johnson
  • Daniel Siragusa
  • Wesley E Bolch
چکیده

In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure-cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of patient size on dose conversion coefficients

In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and pa...

متن کامل

Effect of Phantom Size and Tube Voltage on the Size-Conversion Factor for Patient Dose Estimation in Computed Tomography Examinations

Introduction: This study aimed to establish the conversion factors to normalize the output dose of volumetric computed tomography dose index (CTDIvol) to the patient dose (i.e. size-specific dose estimate (SSDE)) for various phantom diameters and tube voltages. Material and Methods: In-house cylindrical acrylic phantoms with physical diameter...

متن کامل

Development of an Accommodation-Dependent Eye Model and Studying the Effects of Accommodation on Electron and Proton Dose Conversion Coefficients

Introduction International Commission on Radiological Protection (ICRP) has provided a comprehensive discussion on threshold dose for radiation-induced cataract in ICRP publication 116. Accordingly, various parts of the eye lens have different radio-sensitivities. Recently, some studies have been performed to develop a realistic eye model with the aim of providing accurate estimation of fluence...

متن کامل

Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation

Background:  This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation.  Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...

متن کامل

دزیمتری in-vivo در پرتودرمانی خارجی تومورهای مغزی تحت درمان با فوتون MV15 با استفاده از فیلم گاف کرومیک EBT3

Background and purpose: In-vivo dosimetry is used to ensure accurate delivery of dose to tumors during radiotherapy. This study aimed at measuring the entrance doses without the build-up cap for patients undergoing 15MV radiotherapy and determining the percentage errors between doses measured by films and those calculated with a treatment planning system (TPS). Materials and methods: The stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 54 12  شماره 

صفحات  -

تاریخ انتشار 2009